LIGHTWEIGHT CONSTRUCTION

Light work: using innovative processes to produce innovative products
PROBLEM SOLVERS

Reducing costs, increasing efficiency and protecting resources.
With innovative injection moulding processes.
Lightweight construction is very much on trend – in addition to the automotive industry, it can also be found in the fields of logistics, medicine, packaging and building technology, for example. The objective is to reduce part weights or replace metals. Functional integration and multi-material design also ensure sustainable and cost-effective production. Innovative injection moulding processes are required for this purpose, as well as partners who can offer you all-round consulting and service. Like ARBURG.

WIR SIND DA.
The potential of lightweight construction: optimised component design and production process as well as the combination of various processes and materials. These all contribute towards significant cost savings. ARBURG is acutely aware of the strengths and limitations of all the processes. This is because ARBURG has formed partnerships in various networks that focus on the optimisation and combination of processes and materials. This enables us to offer you comprehensive advice on specific technical applications, as well as the corresponding technology.

AT A GLANCE

The potential of lightweight construction: optimised component design and production process as well as the combination of various processes and materials. These all contribute towards significant cost savings. ARBURG is acutely aware of the strengths and limitations of all the processes. This is because ARBURG has formed partnerships in various networks that focus on the optimisation and combination of processes and materials. This enables us to offer you comprehensive advice on specific technical applications, as well as the corresponding technology.

Scope of available processes

- Foam injection moulding
- Integrated fibre reinforcement
- Thermoplastic composites
- Combination with particulate foams
- Fluid injection technology
Recognising potential

The optimisation of part design and the production process or the combination of different processes and materials enable significant cost savings to be achieved. Further benefits: replacement of conventional materials and efficient high-volume production. ARBURG is very familiar with the potential savings and the limitations of the processes involved in moulding lightweight parts. Our special additional equipment and our high-level expertise in consulting will enable you to get the most out of all your processes.

Specific configurations

Our universal ALLROUNDER injection moulding technology can be adapted in detail to the various lightweight construction processes. The frequently complex production sequences are managed with upstream/downstream processing steps, precision injection moulding and detailed quality monitoring via the high-performance machine control system. When implementing turnkey systems, ARBURG, as a primary contractor, offers precise answers to application-specific requirements.

Comprehensive consulting

We offer you comprehensive expertise – from part design and the choice of material, mould and machine configuration to production optimisation. To ensure you get the best solution for your task, a number of specially prepared ALLROUNDER machines are available at the ARBURG Customer Center (Lossburg, Germany) to test the various lightweight construction processes. We ensure a smooth testing process, including detailed documentation: on this you can rely.
Lightweight construction with weight reduction: In the thermoplastic foam injection moulding process, blowing agent is dissolved in the plastic melt during plasticisation and escapes again as microcellular “bubbles” during injection moulding. This not only enables significant savings to be achieved in terms of material use, but also ensures higher component quality, for example through a reduction in distortion or sink marks. The physical properties of the blowing agent and foam-appropriate component and mould optimisation often enable the cycle time to be reduced, thereby ensuring cost-effective production and enabling you to get the most out of foaming.

Combined: ProFoam process enables the production of fibre-reinforced foamed parts.

Material-saving: physical foaming creates minute cellular structures in the part.

FOAM INJECTION MOULDING

Compared to compact components, up to 30% LIGHTER
Perfect interaction: modular ALLROUNDER and special MuCell® technology from Trexel Inc.

INJECTION UNITS FOR MUCELL®

<table>
<thead>
<tr>
<th>Screw diameter [mm]</th>
<th>290</th>
<th>400</th>
<th>800</th>
<th>1300</th>
<th>2100</th>
<th>3200</th>
<th>4600</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>■</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>40</td>
<td>■</td>
<td>■</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>50</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>60</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>70</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>80</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>—</td>
</tr>
<tr>
<td>90</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALLROUNDER</th>
<th>370</th>
<th>470</th>
<th>520</th>
<th>570</th>
<th>630</th>
<th>720</th>
<th>820</th>
<th>920</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
<td>■</td>
</tr>
</tbody>
</table>
MuCell®process

In the MuCell® process, microcellular structures are created by bringing a gaseous blowing agent to a supercritical state (SCF). In this state, the blowing agent can be dosed precisely and mixed homogeneously with the plastic. Hydraulic and hybrid ALLROUNDERS are equally suited to the requirements of the MuCell® process.

Technical requirements include position regulation and a pressure accumulator. All process-related parameters can be set precisely via the SELOGICA control system and are stored in a data set. In addition to suitable technology, foam-appropriate component and mould optimisation is critical. In this area, we work closely with a partner that conducts thorough feasibility studies and provides advice on component design, simulations, and mould design and construction.

MuCell®package

- Extended injection unit
- MuCell® cylinder module
- MuCell® screw
- Pneumatic needle shut-off nozzle
- Adapted nozzle guard
- MuCell® SCF dosing system
- Varan interface
- SELOGICA functional expansion
- Functional testing at ARBURG

Precise gas dosage: MuCell® cylinder module with injector, rupture disk and pressure sensor.

Simple process control: the SCF dosing system is integrated in the SELOGICA control system with dedicated symbols.

Homogeneous mixing: MuCell® screw with special mixing zone and a second non-return valve.
A component design conceived with foaming in mind enables up to **45%** thinner wall thicknesses.

Flexible use: dedicated control system for ProFoam unit.
ProFoam process

In the ProFoam process, which was jointly developed by IKV and ARBURG, a gaseous blowing agent (N₂ or CO₂) is applied to the plastic granulate in a patent granulate lock upstream of the injection unit. This produces a liquid propellant atmosphere in the granulate feed. During plasticising, the blowing agent diffuses into the melt and forms a homogeneous solution. The ProFoam process requires an injection unit with position regulated screw and pressure accumulator (recommended from EUROMAP size 800 upwards). The simple and efficient foaming technique can be individually adapted to your requirements. A further advantage: the ProFoam cylinder module can also be used for compact injection moulding.

ProFoam package

- ProFoam unit with dedicated control system
- Sealed cylinder module
- Standard three-zone screw in the material-conveying zone
- Hydraulic needle shut-off nozzle
High-strength lightweight construction: carbon or glass fibres improve the mechanical properties of many components. The greater the proportion of longer fibres the better. This is exactly where fibre direct compounding (FDC) as developed by ARBURG and the German Plastics Centre (SKZ) comes into play. This makes it easier to substitute other materials and to generate new material combinations more effectively. Moreover, all this can be achieved with inexpensive basic materials. Cost-effective high-volume production – at reduced unit costs.

Unique process: fibres are added directly to the liquid melt.
Flexible setting options: targeted influencing of mechanical part properties.

Lower material costs: individual combination of inexpensive basic materials.

Gentle melt preparation: high proportion of long fibres in the part.
INJECTION UNITS FOR FDC

<table>
<thead>
<tr>
<th></th>
<th>1300</th>
<th>2100</th>
<th>3200</th>
<th>4600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screw diameter [mm]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>■</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>60</td>
<td>■</td>
<td>■</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>70</td>
<td>■</td>
<td>—</td>
<td>■</td>
<td>—</td>
</tr>
<tr>
<td>80</td>
<td>■</td>
<td>—</td>
<td>—</td>
<td>■</td>
</tr>
</tbody>
</table>

Looking for an informative video? Scan here to visit our Media Centre.
Integrated fibre reinforcement

Increasing part resilience and reducing wall thicknesses: the FDC process allows continuous fibres to be cut into lengths of between 5.6 and 33.6 millimetres, which are fed directly into the liquid melt and mixed homogeneously. You can select the fibre length, fibre content and material combination to match your individual needs. An additional thermoplastic cylinder module means that your ALLROUNDERs can still be used for conventional injection moulding. Typical ARBURG: The FDC process is fully integrated in the control system and dedicated symbols enable the process to be programmed easily and flexibly. In addition, you can use the signals of the FDC unit to monitor quality.

FDC features

Little damage to the fibres while preparing the melt, targeted influencing of the component properties, and significantly reduced material costs: The FDC process offers significant advantages over long fibre granulates. We can provide you with turnkey production cells for integrated fibre reinforcement of PP, PA, PET and PC/ABS (more materials on request) - including a function test at ARBURG. The basis for this is our hydraulic ALLROUNDER S with adapted equipment:
- FDC cylinder module
- Special two-stage screw
- FDC unit
- Roving station

Compared to long fibre granulates up to 45% LOWER MATERIAL COSTS

Initial materials: continuous fibres from rovings and standard granulate.

Gentle melt preparation: low fibre shear tendency.

Inline fibre processing: FDC unit with cutting tool and servo-electric side feeder.
Lightweight construction with multi-material design: the overmoulding of thermoplastic composites can significantly improve the mechanical properties of components. Local reinforcement by means of ribs or functional elements such as mountings produces highly resilient, installation-ready products. In many cases you can also replace classic materials in this way. Our modular ALLROUNDER technology enables you to produce high-quality products of this type fully automatically and therefore cost-effectively.

UD tapes, prepregs or thermoplastic composite sheets: common fibre-matrix semi-finished products can be processed thanks to ARBURG’s expertise.

Combination with the FDC process: new approaches to component design and function integration.

With the same thickness and similar characteristics up to 50% LIGHTER THAN METAL

THERMOPLASTIC COMPOSITES
Fibre-matrix semi-finished products

Thermoplastic composites consist of a combination of continuous fibres (glass, carbon or aramide) and a variety of matrix materials. When these are overmoulded with conventional thermoplastics, their positive properties increase. This makes it easier to replace metal materials.

Automatic process

Ideal for high-volume production: thermoplastic composites can be efficiently processed in an automated production cell. The cycle times that can be achieved are the same as for injection moulding. A further advantage is that it can be combined with other processes, such as the FDC process. As a technology and system partner, we offer you comprehensive expertise when it comes to the processing of fibre-matrix semi-finished parts with turnkey systems. Services range from the integration of composite processing or inline quality control to the definition of interfaces or coordination and monitoring of the entire project from acquisition to commissioning.

Suitable for batch production: overmoulding turns thermoplastic composite sections into ready-to-install, high-strength structural components.

Further information:
Turnkey projects brochure
PARTICLE-FOAM COMPOSITE INJECTION MOULDING®

Lightweight construction with functional integration: during Particle-foam Composite Injection Moulding® (PCIM), a foamed moulded part is permanently bonded to plastic. This allows the positive properties of particle foaming to be combined with thermoplastics. During injection moulding, the surface of the inserted particle foam part is melted in a defined way. What this means for you is integrated functionality without downstream assembly. This also enables much more cost-effective high-volume production.
PCIM: offers many advantages

Want to produce stable and lightweight cladding parts? You're seeking to produce energy-absorbent handles with an attractive tactile surface? Want to add easy-to-mount fasteners to insulating covers? The PCIM process jointly developed by Krallmann, RUCH NOVAPLAST and ARBURG creates a unique composite material that offers you plenty of scope for new product ideas.

Integrated functionality in a single step

With a density of between 20 and 60 grams per litre, particle foams produce correspondingly light, energy-absorbent inserts. As the thermoplastics are injected, their surfaces melt in a defined way, creating a strong, permanent, positive bond between the two components.

Special expertise and production engineering

Production of foamed inserts with high-contour accuracy. Detailed coordination of materials. Safe processing without damage or deformation: the PCIM process calls for special technology and expertise. With its strong network of partners, ARBURG realises complete production systems in cross-functional project teams.

<table>
<thead>
<tr>
<th>PARTICLE-FOAM</th>
<th>PLASTIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Low volumetric weight</td>
<td>− Relatively high volumetric weight</td>
</tr>
<tr>
<td>+ High force absorption</td>
<td>− Low force absorption</td>
</tr>
<tr>
<td>+ High thermal insulation</td>
<td>− Low thermal insulation</td>
</tr>
<tr>
<td>− Limited surface</td>
<td>+ Functional surfaces</td>
</tr>
<tr>
<td>− Limited attachment options</td>
<td>+ Wide range of attachment options</td>
</tr>
</tbody>
</table>
Lightweight construction through hollow spaces: the use of liquid or gaseous media during injection not only reduces weight significantly, but also ensures mechanically resilient components. Furthermore, quality is enhanced, sometimes with significantly faster cycles - especially for components with thick-walled areas. To enable you to exploit the potential of fluid injection technology to the greatest possible extent, we offer you a comprehensive package in close cooperation with our partners.
Lightweight and mechanically resilient: WIT or GIT produce targeted hollow areas in the component.

Fluid injection starts shortly before the end of injection and pushes the melt front further forward.

Once the cavity has been filled, the fluid retention phase ensures dimensionally stable components.

Added value for component design and process

During injection, gas (GIT) or water (WIT) is introduced into the mould cavity via the injection nozzle or injectors. This enables cavities to be created in the component. Fluid injection can achieve significant material savings. At the same time, sink holes in components can be reduced. The thinner walls also reduce the cooling time, which has a positive effect on the overall cycle.

Individual uses

All ALLROUNDER injection moulding machines can be equipped with a device for fluid injection and a special interface. The machine control system allows switching from material injection to gas or water injection as standard, as a function of time, stroke or pressure.
APPLICATIONS: IN PRACTICE

Owing to their many excellent characteristics such as reduced weight, improved quality and shorter cycle times, new product ideas and applications frequently arise with regard to lightweight parts. As a technology and system partner, ARBURG always keeps a close eye on efficient production with appropriate unit costs. Using our powerful, customizable ALLROUNDER machines and applying our in-depth expertise, we develop the best production solution for your needs.

Innovative: the semi-finished fibre matrix is heated directly in the mould, formed and overmoulded.

Lightweight: foaming saves on material and prevents sink holes.
Highly resilient: components made from fibre-matrix materials, combined with thermoplastics.

Innovative: Prototype of a seat shell shows the potential of overmoulding fibre-matrix materials.

High-quality: foaming with dynamic mould temperature control produces a class A surface.

Cost-efficient: sturdy cable drive housing made using the FDC-process, dispensing with more expensive pre-compounded granulate mixture.